Likelihood Estimation for Stochastic Epidemics with Heterogeneous Mixing Populations
نویسنده
چکیده
We consider a heterogeneously mixing SIR stochastic epidemic process in populations described by a general graph. Likelihood theory is developed to facilitate statistic inference for the parameters of the model under complete observation. We show that these estimators are asymptotically Gaussian unbiased estimates by using a martingale central limit theorem. Keywords—statistic inference, maximum likelihood, epidemic model, heterogeneous mixing.
منابع مشابه
Assessment of the dynamics of microparasite infections in genetically homogeneous and heterogeneous populations using a stochastic epidemic model.
The aim of this paper was to explore the effect of genetic heterogeneity in host resistance to infection on the population-level risks and outcomes of epidemics. This was done using a stochastic epidemiological model in which the model parameters were assumed to be genetically controlled traits of the host. A finite locus model was explored, with a gene controlling the transmission coefficient ...
متن کاملStochastic Comparisons of Series and Parallel Systems with Heterogeneous Extended Generalized Exponential Components
In this paper, we discuss the usual stochastic‎, ‎likelihood ratio, ‎dispersive and convex transform order between two parallel systems with independent heterogeneous extended generalized exponential components. ‎We also establish the usual stochastic order between series systems from two independent heterogeneous extended generalized exponential samples. ‎Finally, ‎we f...
متن کاملWavelet Based Estimation of the Derivatives of a Density for a Discrete-Time Stochastic Process: Lp-Losses
We propose a method of estimation of the derivatives of probability density based on wavelets methods for a sequence of random variables with a common one-dimensional probability density function and obtain an upper bound on Lp-losses for such estimators. We suppose that the process is strongly mixing and we show that the rate of convergence essentially depends on the behavior of a special quad...
متن کاملNon-Markovian stochastic epidemics in extremely heterogeneous populations
A feature often observed in epidemiological networks is significant heterogeneity in degree. A popular modelling approach to this has been to consider large populations with highly heterogeneous discrete contact rates. This paper defines an individual-level non-Markovian stochastic process that converges on standard ODE models of such populations in the appropriate asymptotic limit. A generalis...
متن کاملEstimation of multiple transmission rates for epidemics in heterogeneous populations.
One of the principal challenges in epidemiological modeling is to parameterize models with realistic estimates for transmission rates in order to analyze strategies for control and to predict disease outcomes. Using a combination of replicated experiments, Bayesian statistical inference, and stochastic modeling, we introduce and illustrate a strategy to estimate transmission parameters for the ...
متن کامل